	Jackson County Core Curriculum Collaborative (JC4)
	Algebra 1
Standard	Learning Targets in Student Friendly Language
N.RN.1	I can describe the relationship between rational exponents and radicals.
	I can apply the properties of exponents to integer and rational exponents.
	I can define rational exponents as a convention used to represent radical notation.
	I can explain the properties of operations of rational exponents as an extension of the
	properties of integer exponents.
	I can explain how radical notation, rational exponents, and properties of integer exponents
	relate to one another.
	I can rewrite expressions that contain radicals and/or rational exponents using the properties
N.RN.2	of exponents.
	I can explain the meaning of rational exponents in terms of radicals and roots.
	I can translate fluently between radical and exponential forms.
	I can explain which operations are closed in the set of real numbers and its subsets of rational
N.RN.3	and irrational numbers.
	I can classify real numbers as rational or irrational.
	I can define closure with an operation, and apply closure to the addition of two rationals and
	two irrationals and multiplication of two rationals.
	I can explain why the sum of two rational numbers is rational.
	I can explain why the product of two rational numbers is rational.
	I can explain why the sum of a rational number and an irrational number is irrational.
	I can explain why the product of a nonzero rational and irrational number is irrational.
	I can choose, apply, and interpret the units for multi-step problems when using formulas,
N.Q.1	graphs, and other data displays.
	I can determine and explain my reasoning for choosing the correct units to be used with a
	given formula.
	I can explain why a specific scale was chosen for a graph.
	I can solve contextual and multi-step problems, and explain how units were used to
	understand the problems.
N.Q.2	I can determine the appropriate units and scale to model data.
	I can select and properly use an existing quantity for a real-world context.
	I can create an appropriate quantity for a real-world context.
	I can explain the meaning of different quantities in a problem and its solution.
	I can explain the importance of considering measurement error and variation when calculating
N.Q.3	and reporting solutions to contextual problems.
	I can record data to an appropriate level of accuracy when using different types of measuring
	devices (e.g. traditional ruler vs. electronic measuring device, stopwatch vs. clock).
	I can report calculated quantities using the same level of accuracy as used in the problem
	statement.
	I can interpret the parts of an expression that describes a real-world scenario, this includes the
ASSE.1.a	tactors, coefficients, and terms.
	I can define an expression, term, factor, operation, coefficient, variable.
	I can interpret the real-world meaning of terms, factors, and coefficients of an expression in
	terms of their units.
	I can use grouping strategies to interpret algebraic expressions that describe real-world
A.SSE.1.b	scenarios.

	I can group the parts of an expression differently in order to better interpret their meaning.
A.SSE.2	I can rewrite expressions using structure to identify important components of the expression.
	I can identify ways to rewrite expressions, such as difference of squares, factoring out a
	common monomial, regrouping, etc.
	I can identify various structures of expressions, such as an exponential monomial multiplied by
	a scalar of the same base, difference of squares in terms other than just x, etc.
	I can use the structure of an expression to identify ways to rewrite it.
	I can explain why equivalent expressions are equivalent.
A.SSE.3.a	I can factor a quadratic expression in order to reveal its zeros.
	I can factor a quadratic expression to produce an equivalent form of the original expression.
	I can explain the connection between the factored form of a quadratic expression and the
	zeros of the function it defines.
	I can complete the square of a quadratic expression to reveal the maximum or minimum value
A.SSE.3.b	of the function.
	I can complete the square on a quadratic expression to produce an equivalent form of the
	original expression.
	I can identify the maximum or minimum of a quadratic written in vertex form.
	I can use the properties of exponents to transform exponential functions to reveal properties
A.SSE.3.c	of the quantity represented by the expression.
	I can rewrite exponential functions using the properties of exponents.
	I can identify exponential growth and decay from an exponential expression.
	I can relate integer arithmetic to polynomial arithmetic (they are closed under the same
A.APR.1	operations) and become fluent in adding, subtracting, and multiplying polynomials.
	I can compare and contrast integer arithmetic to polynomial arithmetic.
	I can add and subtract polynomial expressions.
	I can multiply polynomial expressions.
	I can define closure.
	I can apply the definition of polynomial to explain why polynomials are closed under the
	operations of addition, subtraction, and multiplication.
	I can look for patterns in one variable in data, contextual situations, and other numeric
A.CED.1	patterns to create equations and inequalities which can be used to solve contextual problems.
	I can identify the variables and quantities represented in a real-world problem.
	I can determine the best model for the real-world problem.
	I can create linear, quadratic or exponential equations and inequalities for real-world
	problems.
	I can explain my reasoning and steps when creating an equation or inequality.
	I can solve and interpret the solutions to one variable equation and inequality problems.
	I can describe the relationship between the quantities in the problem.
	I can look for patterns in bivariate data, contextual situations, and other numeric patterns to
A.CED.2	create equations and inequalities which can be used to solve the contextual problem.
	I can identify the variables and quantities represented in a real-world problem.
	i can justify which quantities in a real-world problem are dependent and independent of one
	another.
	for modeling a situation
	I on grante on equation, incruality, or system to model a situation with two warishing
	i can create an equation, inequality, or system to model a situation with two variables.

	I can graph one or more created equations on a coordinate axes with appropriate labels and
	scales.
	I can represent constraints symbolically and determine whether solutions are viable or non-
A.CED.3	viable, provided in the modeling context.
	I can use contexts to determine constraints for equations and inequalities.
	I can use contexts to determine constraints for systems of equations and inequalities.
	I can explain my reasoning for defining a constraint.
	I can contextually, analytically, and graphically explain why a solution is viable or non-viable.
A.CED.4	I can solve formulas for a particular variable of interest.
	I can explain the steps used to rearrange a formula to highlight a variable of interest.
A.REI.1	I can explain and justify each step for solving multi-step linear equations.
	I can justify solutions to equations by explaining each step in solving a simple equation using
	the properties of equality.
	I can explain why, when solving equations, it is assumed that the original equation is true.
	I can apply order of operations and inverse operations to solve equations.
	I can solve multi-step linear equations and inequalities in one variable including those with
A.REI.3	coefficients represented by letters.
	I can solve multi-step equations and inequalities in one variable.
	I can solve multi-step equations and inequalities in one variable with coefficients represented
	by letters.
	I can explain why the inequality symbol is reversed when multiplying/dividing both sides of the
	inequality by a negative number.
	I can use the method of completing the square to solve quadratic equations and to derive the
A.KEI.4.a	quadratic formula.
	I can solve single variable quadratic equations by completing the square.
	I can derive the quadratic formula by completing the square on a generalized quadratic
	equation in terms of x.
	i can find the real solutions to quadratic equations in one variable using multiple methods and livetify my solution mothod. (square roots, completing the square, quadratic formula and
	factoring)
A.ILLI.4.9	I can justify the appropriate strategies to solve quadratic equations given the initial form of the
	equation.
	I can solve single variable quadratic equations by inspection and taking the square roots.
	I can solve single variable quadratic equations by using the quadratic formula.
	I can solve single variable quadratic equations by factoring.
	I can determine when the guadratic formula gives complex solutions.
	I can justify the method of linear combination when solving a system of two equations in two
A.REI.5	variables.
	I can solve a system of two equations in two variables using the method of linear combination.
	I can explain why the method of linear combination produces a simpler equivalent system with
	the same solution as the original.
	I can write, solve, interpret, and justify my solution method for systems of linear equations
A.REI.6	using multiple methods (linear combination, substitution, and graphing).
	I can solve a system of equations by graphing both equations on a coordinate plane and finding
	their point of intersection.
	I can solve a system of equations algebraically, by substitution and linear combination.

	I can justify the method used to solve systems of linear equations given the initial forms of the
	equations or problem context.
	I can explain why some linear systems have no solutions.
	I can explain why some linear systems have infinitely many solutions.
	I can solve a system of equations consisting of a linear equation and quadratic equation
A.REI.7	algebraically and graphically.
	I can solve a system consisting of a linear equation and a quadratic equation graphically.
	I can solve a simple system consisting of a linear equation and a quadratic equation
	algebraically.
	I can demonstrate on a graph when a system consisting of a linear and a quadratic equation
	has no solution, one solution, or two solutions.
A.REI.10	I can explain that the graph of an equation in two variables is the set of all its solutions.
	I can explain that every point (x,y) on the graph of an equation represents values x and y that make the equation true.
	I can describe and interpret the solution set of a system of equations graphically and relate
A.REI.11	that to the algebraic solution.
	I can explain that a point of intersection on the graph of a system of equations represents a
	solution to both equations.
	I can explain how the x-coordinate of the solution to the system of y=f(x) and y=g(x) solves the
	equation $f(x)=g(x)$.
	I can use a graphing calculator, table of values or successive approximations to determine the
	approximate solutions to a system of equations.
A.REI.12	I can describe and interpret the solutions to a system of linear inequalities graphically.
	I can solve problems involving a single linear inequality graphically.
	I can describe the characteristics of a linear inequality and system of linear inequalities, such as
	the boundary line and shading of the appropriate half-plane.
	I can solve a system of linear inequalities in two variables through graphing.
	I can explain the meaning of the intersection of the shaded regions in a system of linear inequalities.
	I can define a function as a rule that assigns to each element of its domain exactly one element
F.IF.1	in its range, and use appropriate function notation algebraically and graphically.
	I can represent a function using a graph, table, and equation and describe the relationship
	between each form using function notation.
	I can explain how a function represents a set of pairs that maps each element of the domain
	(set of inputs) with one unique element of the range (set of outputs).
	I can determine if a relation is a function by applying the definition of functions.
	I can explain that f is a function such that x is an element of its domain and f(x) denotes an
	element of its range. f(2) = 8 means that x=2 is an element of the domain while 8 is an element
	of the range paired with 2.
	I can explain that the graph of f is the graph of the equation $y=f(x)$.
	I can interpret statements that use function notation in terms of a context and evaluate
F.IF.2	functions for inputs in their domains.
	I can flexibly use different ways to describe functions including y= and f(x)= notations, graphs,
	and tables.
	I can evaluate a function for a given input in the domain, as given in function notation.
	I can interpret the meaning of function notation given a context.

	I can identify mathematical relationships in tables, graphs and ordered pairs, and express them
	using function notation.
	I can explain how sequences are functions whose domain is a subset of the integers by using
F.IF.3	different represenational notation.
	I can write the specified terms for a sequence defined explicitly and recursively.
	I can find an explicit or recursive rule for a sequence.
	I can write out terms of a sequence using function notation.
	I can interpret key features of graphs and tables for a function that models a relationship
	between two quantities. (Key features include: intercepts; intervals where function is
	increasing, decreasing, positive, negative; relative maximums and minimums; symmetries; and
F.IF.4	end behavior.)
	I can define and recognize the key features in tables and graphs of functions: intercepts,
	intervals where the function is increasing, decreasing, positive, or negative, and end behavior.
	I can interpret the key features of graphs and tables of functions in terms of the context the
	function's quantities represent.
	I can sketch a graph showing the key features of a function.
	I can determine the appropriate domain of a function given its real-world context. (linear,
F.IF.5	quadratic, exponential)
	I can explain how the domain of a function is represented in its graph, such that it represents a
	situation in a context.
	I can determine what the domain for a function should be and create a graph that displays it.
	I can explain why the function for a given context has a continuous or discrete range.
	I can calculate and interpret the average rate of change of a function, presented algebraically
F.IF.6	or numerically, over a specific interval as well as estimate this rate given a graph.
	I can explain the connection between average rate of change and the slope formula.
	I can explain what the average rate of change means in the context of the problem.
	I can calculate and interpret the average rate of change of a function, presented algebraically
	or numerically, over a specific interval in the domain.
	I can estimate the average rate of change given a function's graph.
	I can graph linear and quadratic functions that are expressed symbolically and show their
F.IF./.a	Intercepts, maxima, and minima.
	I can graph linear and quadratic functions, when expressed in various symbolic forms, by hand
	In simple cases and by using technology in complicated cases.
	I can recognize linear and quadratic families from their symbolic forms and graphical forms.
	I can describe key components of linear functions such as intercepts and rates of change.
	here a describe key components of quadratic functions, such as intercepts, extrema, and end
	Denavior.
5 15 7 h	that are expressed symbolically and show key features of their graphs
F.IF.7.0	Light are expressed symbolically and show key reduces of their graphs.
	on the value of the input
	I can explain an efficient process for graphing piecewise functions and for determining their
	domain and range
	I can graph a niecewise function by graphing its component parts
	I can explain how to find the vertex of an absolute value function
	I can use symmetry when generating ordered pairs for an absolute value function
	i can use symmetry when generating ordered pairs for an absolute value function.

	I can graph an absolute value function using evaluated points, symmetry, or transformations of
	the parent function.
	I can graph exponential functions that are expressed symbolically and show their intercepts
F.IF.7.e	and end behavior.
	I can graph exponential functions, when expressed symbolically, by hand in simple cases and
	by using technology in complicated cases.
	I can show/label intercepts and describe the exponential functions end behavior.
	I can manipulate a quadratic expression by factoring and completing the square to find and
F.IF.8.a	interpret a quadratic functions zeros, extreme values, and symmetry.
	I can explain the relationship between the zeros and binomial factors of a quadratic equation.
	I can factor a quadratic equation to reveal the zeros.
	I can complete the square in a quadratic function to produce an equivalent function.
	I can identify and interpret zeros, extreme values, and symmetry of the graph of a quadratic
	function.
F.IF.8.b	I can use the properties of exponents to interpret the meaning of exponential functions.
	I can classify an exponential function as representing exponential growth or decay by
	examining the base.
	I can use the properties of exponents to interpret expressions for exponential functions in a
	real-world context.
	I can express the growth or decay rate as a percentage rate of change.
	I can compare properties of two functions represented differently (graphs, tables, equations,
F.IF.9	verbal descriptions) and draw conclusions based on those comparisons.
	I can compare properties of two functions when they are represented in different forms
	(algebraically, graphically, tables as well as verbal descriptions).
	I can discover patterns in contextual problems and sets of ordered pairs to create verbal,
F.BF.1.a	recursive, or explicit symbolic rules that describe them.
	I can write an explicit symbolic function to describe real-world problems.
	I can write a recursive rule to describe patterns in contextual problems.
	I can combine different families of functions using arithmetic operations to build functions that
F.BF.1.b	describe situational contexts.
	I can combine different parent functions, using the operations of addition, subtraction,
	multiplication, and division, to write a function that models a real-world context.
	I can justify the operations used in function combination in terms of real-world context.
	I can apply transformations to equations of parent funtions to model a contextual problem.
	I can translate between the recursive and explicit formulas of arithmetic and geometric
F.BF.2	sequences and use them to model situations.
	I can explain what a recursive formula tells about a sequence.
	I can explain what an explicit formula tells about a sequence.
	I can distinguish between recursive and explicit formulas for a sequence.
	I can distinguish between arithmetic and geometric sequences by finding a common difference
	or ratio.
	I can explain why the recursive formula for an arithmetic sequence uses addition and why the
	explicit formula uses multiplication.
	I can explain why the recursive formula for a geometric sequence uses multiplication and why
	the explicit formula uses exponentiation.
	I can write arithmetic sequences in recursive and explicit forms.
	I can write geometric sequences in recursive and explicit forms.

	I can translate between recursive and explicit forms of arithmetic/geometric sequence
	formulas.
	I can use arithmetic and geometric formulas to model situations.
F.BF.3	I can experiment and identify the effect of a transformational constant on a function.
	I can use ordered pairs or algebraic reasoning to explain why $f(x) + k$ translates the graph of $f(x)$
	vertically.
	I can use ordered pairs or algebraic reasoning to explain why f(x+k) translates the graph of f(x)
	horizontally.
	I can use ordered pairs or algebraic reasoning to explain why kf(x) vertically stretches or
	shrinks the graph of f(x) by a factor of k.
	I can use ordered pairs or algebraic reasoning to explain why f(kx) horizontally stretches or
	shrinks the graph of f(x) by a factor of 1/k.
	I can describe the transformation that changes a graph of f(x) into a different graph when given
	pictures of the pre-image and image.
r.br.4.a	I can determine the inverse of a linear function.
	I can solve a function, f(x), for the input value that yields a specific output c.
	I can explain the process of using an inverse as an operation that undoes another operation
	I can prove that over equal intervals linear functions grow by equal differences and
FIF1a	exponential functions grow by equal factors
	L can identify that linear functions grow by equal differences over equal intervals
	I can identify that exponential functions grow by equal factors over equal intervals.
	I can prove that linear functions grow by equal differences over equal intervals.
	I can prove that exponential functions grow by equal factors over equal intervals.
F.LE.1.b	I can analyze a given context to determine if it can be modeled with a linear function.
	I can recognize situations that display equal rates of change over equal intervals and can be
	modeled by a linear function.
	I can justify choosing a linear function to model a real-world problem.
F.LE.1.c	I can analyze a given context to determine if it can be modeled with an exponential function.
	I can recognize situations that display equal ratios of change over equal intervals and can be
	modeled with exponential functions.
	I can justify choosing an exponential function to model a real-world problem.
	I can create linear and exponential functions, including arithmetic and geometric sequences,
F.LE.2	based on information from multiple non-symbolic representations.
	I can determine if a function is linear or exponential given a sequence, a graph, a verbal
	description, or a table.
	I can construct linear functions given an arithmetic sequence, graph, verbal description, and/or
	table of data.
	I can construct exponential functions given a geometric sequence, graph, verbal description,
	and/or table of data.
F.LE.3	Using graphs and tables I can determine a generalization for which functions grow the fastest.
	functions
	I unicions.
	quadratically, or polynomial functions in general
	L can use graphs or tables to compare the rates of change of linear guadratic and exponential
	functions
1	Turiodono.

	I can interpret the parameters in linear and exponential function models, in terms of their
F.LE.5	contexts.
	I can explain the slope and y-intercept in context for a linear model.
	I can explain the meaning of the base, the exponent, and the coefficient in context for an
	exponential model.
	I can compose an original problem situation and construct a linear function to model it.
	I can compose an original problem situation and construct an exponential function to model it.
S.ID.1	I can represent data with dot plots, histograms, and box plots.
	I can create a dot plot, using appropriate scales on a number line.
	I can construct a histogram using an appropriate bin size.
	I can explain what the display is telling the viewer in the context of the situation.
	I can explain how extreme cases can be represented based on the display type.
	I can compute the 5-number summary for a set of data.
	I can construct a box plot based on the 5-number summary.
	I can compare the center (mean and median) and spread (interquartile range and standard
S.ID.2	deviation) of two or more data sets based on the shape of the data distribution.
	I can identify a data distribution as uniform, skewed left, normal, or skewed right.
	I can choose the appropriate measure for the center of a data set based on the shape of a data
	distribution.
	I can choose the appropriate measure for the spread of a data set based on the shape of a data
	distribution.
	I can use appropriate statistics for center and spread to compare two or more data sets.
	I can interpret differences in shape, center, and spread based on the context of the data set
S.ID.3	and determine possible effects of outliers on these measures.
	I can identify outliers of a data set.
	I can explain now extreme values or skewness can effect the mean of a data set.
	distributional characteristics
	List inductional characteristics.
	center and spread in the context of the data sets
	I can interpret differences in shape, center and spread in the context of data sets
	I can summarize represent and interpret (joint marginal and conditional relative
SJD.5	frequencies) categorical data in two-way frequency tables.
	I can summarize categorical data for two categories in two-way frequency tables.
	I can calculate joint, marginal, and conditional relative frequencies for two categories of
	categorical data.
	I can interpret relative frequencies in the context of the data.
	I can recognize possible associations and trends in the data.
	I can fit a function to quantitative data represented on a scatter plot and describe how the
S.ID.6.a	variables are related in the context of the data.
	I can describe how variables are related within context of the situation.
	I can use technology to create a Line of Best Fit for a given set of bivariate data.
	I can fit a linear function to a given scatter plot that suggests a linear association.
	I can describe associations in terms of strength and direction.
	I can explain the limitations of extrapolation for different models.
S.ID.6.b	I can determine the appropriateness of a model by analyzing a residual plot.
	I can compute the residuals for a set of data and the function of best fit.

	I can construct a scatter plot of the residuals.
	I can analyze the residual plot to determine whether the function is an appropriate fit to a set
	of data.
S.ID.6.c	I can fit a linear funtion to a scatter plot that suggests a linear association.
	I can fit a linear function to a given scatter plot that suggests a linear expression.
	I can make an argument why one line of fit is more appropriate than another.
S.ID.7	I can interpret the slope and intercept of a linear model based on context.
	I can interpret the slope of a linear model in terms of averages for the context of given data.
	I can interpret the intercepts of a linear model, if appropriate, in the context of given data.
S.ID.8	I can compute and interpret the correlation coefficient of a linear fit.
	I can define the correlation coefficient.
	I can compute, using technology, the correlation coefficient of a linear fit.
	I can interpret the correlation coefficient of a linear fit as a measure of how well the data fit
	the relationship.
S.ID.9	I can describe the difference between correlation and causation.
	I can explain the difference between correlation and causation.
	I can determine if statements of causation seem reasonable or unreasonable and defend my
	opinion.
Кеу:	
Yellow Highlight = Critical Area	
Blue Font C	olor = Long Term Learning Goal
Black Font Color = Short Term (possibly daily) learning target WITHOUT condition and criteria.	